
NAT L INST OF STAND & lECH R I.C

A11103 M77flTD

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and

Technology

N»ST

PUBLICATIONS

*

NIST Special Publication 500-184

Functional Benchmarks for

Fourth Generation Languages

Martha Mulford Gray

Gary E. Fisher

Application

Development

Productivity

NIST Special Publication 500-184

Functional Benchmarks for

Fourth Generation Languages

Martha Mulford Gray

Gary E. Fisher

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

March 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-184
Natl. Inst. Stand. Technol. Spec. Publ. 500-184, 60 pages (Mar. 1991)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1991

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

PREFACE

This report has been prepared by the Computer Systems Laboratory (formerly the Institute for

Computer Sciences and Technology). It is the fifth report issued in this area. The first report

was a summary of the Application Development Productivity Workshops, held on November IS-

IS, 1985 at the National Institute of Standards and Technology (formerly the National Bureau of

Standards.) Much of the discussion at this workshop was an urgent requirement for information

and guidance on 4GLs. This impems set the stage for accelerating research and the dissemination

of information in this area.

The second report was A Functional Model for Fourth Generation Languages, NBS Special

Pubhcation 500-138, by Gary E. Fisher [FISH86], issued in June 1986. The purpose of this

functional model was to define 4GLs "in a manner similar to specifying the functions of a specific

software appUcation." This definition allowed managers, technical personnel, and end-users to refer

to commonly understood terminology in the 4GL context. In addition, it defined the interfaces

between 4GLs, humans, operating systems, peripheral devices, and other appUcation software.

The third report was Guide to the Selection and Use of Fourth Generation Languages, NBS
Special PubUcation 500-143, by Martha Mulford Gray [GRAY86], issued in September 1986. The
report provided guidance on the selection process in general for 4GLs; a description of the features,

functions, and capabihties of 4GLs; and a brief discussion of the use of 4GLs. "Functional

Benchmarks for Fourth Generation Languages" should be used with the guidance provided in

[GRAY86].

The fourth report was Application Software Prototyping and Fourth Generation Languages,

NBS Special PubUcation 500-148, by Gary E. Fisher [nSH87], issued May 1987. This report was
designed as an introduction to the planning, organizing, executing, and controUing of a methodology

for appUcation prototyping. The report recommended that since 4GLs provide many of the

capabiUties necessary for prototype development, a combination of appUcation prototyping and 4GLs
can provide a cost-effective and controUable method of developing and maintaining software.

This fifth report represents years of research and the efforts of not only the authors but also of

numerous stalT and students who installed and tested ten 4GL products, executed and refined the

benchmarking tasks, and assisted in the analyses of the results. We would especiaUy like to

acknowledge the efforts of Laura Benedict, Jon Berry, Dawn HUl, Nadine Melinger, Dan Nielsen,

Teresa Stansbury, and Doug White.

ui

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Approach 1

1.2 4GL Selection Process 2

2. FUNCTIONAL BENCHMARKING METHODOLOGY 4

2.1 Benchmarking Process 5

2.1.1 Rate 4GL Features and Assign Weights 5

2.1.2 Select Appropriate Tasks 6

2.1.3 Perform the Appropriate Tasks 6

2.1.4 Rate the Performance of Each Task 6

2.1.5 Compute the Weighted Score 7

2.1.6 Analyze the Results 7

2.2 Benchmarking Organization 7

2.2.1 Operational Features 8

2.2.2 Data Management Features 8

2.2.3 User Interfaces 8

2.2.4 Report Writing Feamres 9

2.2.5 Language Features 9

2.2.6 Graphics Features 9

2.2.7 Security Features 10

2.2.8 Implementation Features 10

2.2.9 Application Development 10

3. 4GL REQUIREMENTS CHECKLIST 11

4. BENCHMARKING TASKS 14

4.1 Operational Features 15

4.2 Data Management 16

4.3 User Interface 20

4.4 Report Writing Features 23

4.5 Language Features 26

4.6 Graphics Features 31

4.7 Security Features 32

4.8 Implementation Features 36

4.9 Apphcation Development 37

5. 4GL BENCHMARKING SUMMARY 42

6. ANALYSIS AND CONCLUSIONS 50

REFERENCES 51

INDEX 52

V

ABSTRACT

In recent years, fourth generation language (4GL) usage has expanded in data processing

organizations, especially where end-users have assumed increased programming responsibilities.

Since there are no 4GL standards, managers selecting a 4GL need some method of determining how
well a particular 4GL will meet organizational, application, and user requirements. This report

provides a methodology to assist in that determination. It contains "functional benchmarks" (as

opposed to performance benchmarks) consisting of a testing methodology and descriptions of tests

to evaluate the capabilities of a particular 4GL in relation to organizational requirements. Test

results are evaluated at two levels^: the 4GL's ability to perform a task, and the ease of performing

it. These evaluations are combined with user-defined weighted requirements to produce an overall

rating for each 4GL tested.

1. INTRODUCTION

The label "Fourth Generation Language" (4GL) has been applied to a wide variety of products.

This variety makes any attempt to create generic evaluation measures difficult. Because each 4GL
product is different, the most important measure is the product's abiUty to fulfill the requirements

of the appUcation at hand. This ability cannot always be determined from a vendor's demonstration

or another user's opinion. The best method of evaluation is to test how well the 4GL satisfies the

requirements of the application and to record the results.

NBS Special Publication 500-143, Guide to the Selection and Use of Fourth Generation Languages ,

provides guidance on the selection process for 4GLs; a description of the features, functions, and

capabilities of 4GLs; and a brief discussion of the use of 4GLs. One of the steps (step nine) in

the selection process described in that report is to "analyze the top few choices in detail using a

benchmark, pilot test, demonstrations and/or user comments." This report describes functional

benchmarks that could be used for this step. It contains a testing methodology and a set of

functional benchmark tasks to assist managers in determining if a proposed 4GL meets an

appUcation' s requirements.

1.1 Approach

The term "functional benchmark" was derived from the Federal Information Processing Standard,

Guidelines for Benchmarking ADP Systems in the Competitive Procurement Environment , FIPS

PUB 42-1.

"For these guidelines the term 'benchmarking' is used to convey the same meaning as the more

explicit term 'benchmark mix demonstration.' A 'benchmark mix demonstration,' sometimes referred

to as a Live Test Demonstration (LTD), consists of a user-witnessed running of a group (mix) of

programs representative of the user's predicted workload on a vendor's proposed computer system

in order to validate system performance. Another type of demonstration that is frequently called

'benchmarking/ more properly should be referred to as either a capability demonstration or a

functional demonstration. The latter type of demonstration is intended to show only system or

functional capabilities in some specific areas without regard to total system performance."

1

The methodology presented in this report is based on a study of fourth generation languages

performed by the Computer Systems Laboratory (CSL), of the National Institute of Standards and

Technology (NIST), formerly the National Bureau of Standards (NBS). To date, this research has

generated a workshop summary and three publications: A Functional Model for Fourth Generation

Languages , NBS Special Publication 500-138 [FISH86], Guide to the Selection and Use of Fourth

Generation Languages , NBS Special Publication 500-143 [GRAY86], and Application Software

Prototyping and Fourth Generation Languages , NBS Special Publication 500-148 [FISH87].

As part of this 4GL research, test databases were created and about 60 tasks developed and

executed on various 4GL products to evaluate and measure characteristics of 4GLs. These specific

tasks were modified and augmented to accommodate the diverse functionality provided by different

4GLs. A generalized benchmarking methodology for measuring the functionality (not performance)

of 4GLs was developed from experience with these tasks and 4GL products.

The generalized tasks were rearranged and respecified to remove as much bias and implementation

difficulty as possible. The improved set of tasks was then reordered in a manner that generally

would require the least amount of work in performing tests of a specific 4GL. Most of the basic

tasks were tested on microcomputer versions of the 4GL products but the generalized methodology

and tasks should be appUcable to any hardware that will support the 4GL products.

There are over 100 requirements and over 200 tasks included in this report. The time required to

complete all of the tasks, if all of the requirements were needed, is difficult to estimate because

it is dependent on the knowledge and expertise of the person mnning the tasks. If the person is

familiar with the particular 4GL that is being tested, completing the tasks will require much less

time than for someone with no 4GL experience because the testing time has to include the 4GL
leaming curve. We were able to complete all of the tasks in a few days for some of the products

and a few weeks for others. Users with no 4GL experience might require twice as much time.

Since functional benchmarking is only part of the 4GL selection and evaluation process, the

methodology described in this report will be most useful if used in conjunction with the selection

process described in [GRAY86]. The selection process is summarized in the following section.

1.2 4GL Selection Process

Ten steps in the 4GL selection process are defined in [GRAY86] and illustrated in figure 1. The
following presents a summarized version of the process and provides guidance on the selection

process as a whole. The ten-step process should be completed whether you plan on purchasing a

large, medium, or small system. The amount of depth and detail in each step will change

depending on the size of the procurement.

The selection process begins with step one, a brief description of the problems that are to be

solved or the applications that are to be implemented in the 4GL.

The second step is to complete an analysis of the application environments, i.e., the hardware,

software, organizational, and user environments.

The third step is to decide how the selection decision will be made, i.e., if there will be a

selection and evaluation team or a single decision-maker.

2

STEP MAJOR CONCEPTS

1 . DEbCRlnri FKCjBTiKM. OR o scope
Air ±j±.\^t\i. ±\Jc\ o puirpose

o domain

O o hardware environinent
ENVIRONMENT 0 software environment

0 organizational environment
o user environment

3. DECIDE ON SELECTION 0 establish selection and
AirFKUAv^H evaluation team

o identify decision makers and
control points

A
• o xaendry appxicauion

recjuirement s

C3 . o use Product Selection
4GL FEATURES Criteria

c
o . Kill 11, 1 JH..'^ 1 Kh.l J £ £lA.X UxvELo o establish users rating system

o icisnuiry mana.au.ory rsaL.urc5
0 identify undesirable features

7. SELECT CANDIDATE PACKAGES 0 survey literature
o survey software reference

services
o attend conferences, trade

shows

8. RATE 4GLS AND SELECT 0 screen using hardware, operating
TOP FEW systems, and mandatory features

0 use other ratings to narrow
selection

9. ANALYZE TOP FEW IN DETAIL o benchmark
0 pilot test
0 demonstrations
o user comments

10 . SELECT 4GL

Figure 1. 4GL Selection Process

The fourth step is to define the requirements for the 4GL based on the information gathered in

the first two steps. Emphasis must be placed here on defining actual requirements, and not on

unrealistic demands, wishes, etc.

After the requirements have been defined, a list of 4GL features which can fulfill these

requirements must be developed. (See [GRAY86] for a full description of these features.) This

is step five of the selection process.

Step six is to develop a ranking or rating system for the 4GL features in order to differentiate

between the most desired and the least desired features.

3

Step seven consists of selecting candidate packages. Information on the availability of 4GLs can

be obtained from computer literature, software reference services, trade shows, computer

conferences, and computer user groups.

Step eight is to eliminate most of the candidate packages. First, a screening process should be

established to eliminate packages that do not fulfill the hardware, operating system, or mandatory

feature requirements, or that possess undesirable qualities. After the screening process, further

elimination of products should be based on rating the other feamres of the 4GLs and comparing

these ratings witli the user ratings of the desired features. This step should eliminate all but a few

products.

Step nine is to analyze the top few candidate products in detail. Approaches such as

benchmarking, pilot testing, vendor demonstrations, and gathering user opinions can be used for

this step.

The final step, step ten, is to select the most appropriate package.

2. FUNCTIONAL BENCHMARKING METHODOLOGY

The functional benchmarking methodology is designed to determine if a 4GL has the functionahty

necessary to meet the requirements of an appUcation. The requirements are dependent on what

needs to be done and by whom; specifically, the characteristics of the application, and the charac-

teristics of the users who will be working with these appUcations. These requirements must be

determined before the functional benchmark tasks can be performed.

^ The second step of the selection process in [GRAY86] is to analyze the application environment.

A process is provided in [GRAY86] for analyzing this appUcation environment, which includes the

hardware, software, organizational, and user environments. The results of this analysis are used in

step four to define the application requirements. For example, a typical requirement in data

processing environments is die need for the 4GL to provide programming interfaces for both casual

and expert users. For the casual user, a menu-oriented or a fill-in-the-blanks type of interface may
be required. For the expert or professional user, a succinct command language may be needed.

Not all 4GLs provide both types of interfaces. Those that do may not necessarily provide all of

the functionality needed for the application.

These application requirements are used to develop a hst of desired 4GL features, step five of the

selection process. These features must be rated by importance for the application and weights must

be developed for this rating. Step six includes identifying mandatory or critical features that the

4GL must possess. These mandatory or critical features can be used to "narrow the field,"

eliminating some of the potential 4GL products. The functional benchmark tasks are run on the

few products that remain after eliminating those that do not possess the mandatory or critical

features. The results of these tasks are compared with the weights of the selection feamres to

provide the final selection guidance.

The functional benchmarks are divided into numerous tasks. Each task should be evaluated on the

4GL's ability to perform the task and the ease of performing the task. Determining if a 4GL can

perform the task is fairly objective; however, judging its ease of use is more subjective. WhUe
objectivity in developing these tests was a significant goal, we found that subjective measures were
also needed. Judgements such as a preference for function key-initiated actions as opposed to

4

spelled-out command-initiated actions, or color monitor screens rather than black and white screens,

are normally realized after experience has been gained and are essentially subjective in nature.

Critical requirements and the required level of functionality provide the objective measures of these

tasks. If a requirement is critical (i.e., the 4GL must provide the functionaUty), then a 4GL that

does not provide it objectively fails the test for that capability. If the capability is available, but

cannot be used effectively (e.g., procedures may contain conditional statement constructs such as

IF statements, but contain no IF-THEN-ELSE constructs), then you may decide that the 4GL does

not meet the threshold functionality required, and it may faU the test.

The functional benchmark tasks were designed to mn on a microcomputer system with sufficient

equipment to aUow the 4GL to be installed. They could, however, be run on a larger computer

if desired. We have endeavored to make the tasks as generic as possible to remove portabihty

problems due to systems software, architecture and other dependencies.

While a production system based on the selected 4GL may eventually execute on a minicomputer

or mainframe, the microcomputer versions generally have sufficient capabilities to allow testing of

functionality and provide a cost effective instrument for doing so. Once a 4GL has been selected

for an application, it should be tested on the hardware that will be used before it is put into

production.

2.1 Benchmarking Process

There are six steps in the process of performing these benchmark tasks. They are~

1. Rate the desired features of a 4GL according to the application's requirements and

assign appropriate weights to these features.

2. Select the functional benchmark tasks which are appropriate for measuring these

desired features.

3. Perform the appropriate tasks.

4. Evaluate the 4GL's performance on each task.

5. Compute the 4GL's weighted score.

6. Analyze the results.

2.1.1 Rate 4GL Features and Assign Weights

The importance of a particular requirement is determined by its weight in relation to other

requirements. You assign these weights as your preference before tests are performed. For

example, if a relational database capability is critical for your applications, the weight associated

with relational capabilities will rank very high on your preference list. On the other hand, graphics

capabilities may play no role in your requirements. You would, therefore, assign littie or no
importance to this particular aspect.

5

The assignment of weights to requirements may be performed in any manner deemed appropriate

to an organization's philosophy and culture. Some organizations provide detailed hsts of require-

ments to those who will use the system and ask for ranked preferences for each requirement.

Others may do this ranking by committee. As the number of requirements increases, ranking these

requirements gets much more difficult.

Another suggested method of assigning weights consists of using a generaUzed requirements

checklist like the one provided in this report (see sec. 3). Weights of importance are assigned

using any numbering system. Often numbers from one to five are used with the number five

having near-critical importance and the number one having little importance. One user or several

users could assign the weights. If several users assign weights, an individual must be assigned to

develop one overall or average weight for each requirement. Requirements that are not germane
would be rated zero.

2.1.2 Select Appropriate Tasks

You should identify which tasks are to be performed depending on the requirements that you have

specified. The tasks that relate to the requirements are identified by section number attached to

each requirement. The number of tasks that should be run are totally dependent on the identified

requirements of the application. If the apphcation does not require specific functions, these tasks

should not be executed.

2.13 Perform the Appropriate Tasks

We suggest that you run the tasks in the order they are presented. For example, the 4GL must be

installed before files or tables can be defined using the 4GL. We strongly suggest that you adjust

the tasks to meet the specific requirements of your application and use files required by the

apphcation.

2.1.4 Rate the Performance of Each Task

As you perform each task, you should rate the results according to how much of the task was
accomplished and how well the 4GL performed the task. There are two numeric ratings given to

each result. The first rating is the functional rating, or how much of the task was accompUshed
(e.g., 0-none, 1-some, 2-most, 3-all). The second describes how well you think the 4GL performed

the task or how easy it was for you to perform the task (e.g., 0-not done/impossible, 1 -poor-

ly/hindrance, 2-adequately/helpful, B-easily/very helpful).

Some of the tasks may seem difficult to rate in relation to functionality and ease of

use/performance. Documentation, for example, may not appear to have a measurable performance,

but if it is disorganized or incomplete, you may find that it hinders progress or may offer no help

at all. In this case, it would have a direct impact on performing a specific test.

Since the tasks are grouped by requirement, some requirements have more than one task. In some
cases this is because the requirement cannot be tested using one task but takes multiple steps or

multiple tasks. An example of these multistep tasks would be importing ASCII files. First a

database file structure must be described, data imported, and the imported data compared with the

6

original data. Each of these tasks can be rated but they are grouped under the requirement of

"Ability to import ASCII files." Others require testing various aspects of the requirement to obtain

a thorough testing of several variations. For example, the requirement "Reporting options for user

specified page breaks" has four tasks: generate a report with a page break after each total, after

each subtotal, after 40 lines, and after a sort value has changed. There is not a single task that

adequately tests page breaks.

After you have rated these multiple tasks under a requirement, you need to average the ratings to

get one average value for functionality and one for ease of use for this requirement. Add the

functionality ratings for each task and divide this number by the number of tasks performed.

Repeat for the ease of use ratings. Enter these numbers on the average line.

2.1^ Compute the Weighted Score

Once the selected tasks for a requirement have been performed, the scores are totaled, averaged,

and multiplied by the weight given for the requirement. These weighted numbers are then added

together to produce a total weighted value for the 4GL.

2.1.6 Analyze the Results

These procedures are repeated, with the same weighted requirements, for aU 4GL products under

consideration. The total weighted value for each 4GL tested will provide an indication of which

4GL will most closely match your stated requirements. The highest scoring product should fulfill

the majority of your requirements.

In addition to looking at the total numbers you should also look at the ratings of each fimctional

area and of the individual requirements, especially for the highest weighted requirements. This is

important when two products have total scores that are very close to each other. If a 4GL is rated

somewhat higher than another, but you do not feel as comfortable about the higher rated one, you

may be able to determine the reasons for this by analyzing the scores for individual functional areas

of each 4GL. An analysis of variations of individual area scores may teU you how much
confidence you should have in your choice.

2.2 Benchmarking Organization

The requirements and tasks are divided into several functional areas that closely parallel the feature

areas described in [GRAY86]:

1. operational features;

2. data management feamres;

3. user interfaces;

4. report vmting features;

5. language features;

6. graphics features;

7. security features;

8. implementation features; and

9. application development.

This organization was designed to facilitate the users' normal usage of a 4GL. The software cannot

7

be run until it is installed, data cannot be queried until the database exists, etc. This logical

grouping of functional areas can be described as follows.

2.2,1 Operational Features

The operational features are those functions that are basic to the operation of the 4GL. In general,

operational features include hardware and software requirements for a 4GL, portability attributes,

performance characteristics, communication features and operating system interfaces. Since some
of these features are critical or mandatory features, products that do not meet these requirements

should be ehminated before getting to the benchmarking step of the selection process (e.g., products

that wUl not run on the hardware required would not get to the benchmarking step). Thus, tasks

for these features are not included in this report.

There are other operational features that cannot be evaluated before a database is created and

experience gained with the 4GL. These include such feamres as diagnostic messages, interfacing

the 4GL to other programming languages, and quality of the documentation. These features are

included in the tasks for implementation feamres.

The operational features included in this section of requirements and tasks are those that relate to

getting a 4GL up and running: installation and documentation of the installation procedures.

2.2.2 Data Management Features

The general data management functions include the capabilities necessary to manage and manipulate

data; to define data structures, store data, and retrieve data. Because a 4GL has other capabOities

to manipulate data such as query languages, user interfaces, report writing features, etc., this section

is limited to data definition features, file creation, importing, and exporting data.

The ability to easOy define file structures, data formats, and required data types is important to

the capabihty of creating new databases. The ability to load data from extemal files into the

database can be critical for converting ft"om another apphcation or in accepting data created by other

apphcations. Since many 4GLs can process data from many database systems without conversion,

the ability to read, write, and query from extemal files is also important to many applications.

These functions are included in this section.

2.23 User Interfaces

There are many different kinds of user interfaces to 4GLs. Menus and screens are some of the

primary means that a user has to interact with the 4GL and an apphcation. Some language features

are also part of the user interface but they are included in another section.

The abiUty to design screens and menus is required for most apphcation development. The 4GL
may need to provide functions such as field character validation, field masks, required fields, filled

fields, computed fields, default field values, screen/data field refresh, interfield checks, and

interrecord checks for the apphcation. The requirements and tasks included under user interfaces

cover the fundamental aspects of screen and menu design.

8

2.2.4 Report Writing Features

The ability to display or print both detailed and summarized data in a straightforward and

meaningful manner is one of the most important features of a 4GL. Generally, a 4GL provides a

default report format for simple reports so that the user can issue a query and have the results

printed as a report without having to specify elements of the report such as paging, date, page

break, column position, etc. In addition, the 4GL provides capabilities for specifying precisely these

elements, if the user desires. The most complete report writer will provide the most flexibility for

displaying data.

2.2.5 Language Features

There are many language functions of a 4GL: nonprocedural language functions, query language

functions, programming or command language functions, interfaces with other programming
languages, and the ability to produce compiled or optimized code. All of these are very important

to the operation and functionality of the 4GL. Quite often, the language capabilities determine

whether the 4GL has the power or ease of use that is desired for the application. If the user

interface is difficult to use, the 4GL may not be appropriate for novice users. If it lacks some of

the programming capabilities of a third generation language, it may not be powerful enough for the

application. The richness of the language and die level of integration between all aspects of the

4GL (report writer, screen generator, query language) strongly influence whether or not the software

is in fact a fourth generation language.

The language in which the 4GL is written (the implementation code) and the type of application

code it produces may influence the portability of the application and the performance of the 4GL.

These features of the language are difficult to generalize into tasks but should be considered in the

overall assessment of the 4GL.

In many cases, the nonprocedural language of the 4GL is implemented in screens and menus.

Because these are also used for data input, display, etc., the tasks for testing these functions are

included in the user interface. This section includes requirements and tasks for query language

functions, nonprocedural language functions, procedural language functions, and integration aspects

of the language.

2.2.6 Graphics Features

Some 4GLs have graphics facilities integrated with the other functions of the 4GL, while others

provide interfaces to separate graphics software. Some 4GLs simply provide a third generation

language interface that allows existing graphics software, such as FORTRAN routines, to be

executed. The requirements of the application have to be matched with these capabilities.

There is a wide range of graphics capabilities that are available. Some 4GLs only provide simple

business graphics capabilities, bar charts, pie charts, and line graphs. Others may provide three-

dimensional graphs, scatter diagrams, and logarithmic graphs. The most important feature of any

of these capabilities may be the amount of integration with the rest of the 4GL functions. For

example, creating a graph whose data points are obtained directly from the database and whose
labels are obtained from the data dictionary, requires much less effort than one which requires

9

typing all labels or re-entering the data.

Novice users may need graphics features to perform scaling, calculating percentages for pie charts,

placing labels, and formatting bar placement. Users may want th6 ability to view the chart on the

screen and manipulate the results before any printing takes place. Some users may want high-

quality presentation graphics, high resolution capabilities, color, multiple fonts, and interfaces to

plotters or photographic output devices.

The requirements and tasks given for graphic features are not meant to cover all possible graphic

requirements. If an application has very complex graphic requirements, additional tasks should be

added for the benchmarking process.

2.2.7 Security Features

The security features of a 4GL often include user identification and password protection at various

levels (user, owner, file or table, record, field, entity or data item, procedure [edit, delete, insert],

etc.), backup protection and protection of data during crashes, encryption capabilities, and feamres

for audit trails. The level of security required has to be determined for the application and the

system the application runs on. Often the system security or pre-existing software provides some
of the needed security features. If adequate security software already exists, then the software

attributes of the 4GL have to be tested for secure interfaces to ensure that they do not provide a

"back door" into the system. If the security of the system is dependent on the security attributes

of the 4GL then these features of the 4GLs should probably be more thoroughly tested than the

tasks that we provide. The tasks given for this area cover "typical" kinds of security functions for

4GLs that would run in a microcomputer environment.

2.2.8 Implementation Features

The tasks for these features are tasks that cannot be evaluated until the user has gained experience

with the 4GL. As mentioned in section 2.2.1, many of these tasks are related to operational

features such as interfacing with other languages, interfacing with the operating system, quality and

usefulness of diagnostic messages, and on-line help capabilities. Others are related to overall usage

of the 4GL, such as judging the quality of the documentation.

2.2.9 Application Development

The tasks for these features are really tasks which combine or incorporate different functions of the

4GL into a cohesive application. The application may be generated from the screen painter, report

generator, and language feamres which have been tested in other feature areas. This grouping of

features, however, is meant to test the ability of the 4GL to put them all together to build an

application. Language integration, language functionality, debugging aids, and programming
messages are examples of 4GL features that really cannot be tested except by building an

application or a prototype of an application.

10

3. 4GL REQUIREMENTS CHECKLIST

The 4GL requirements checklist must be used for the first procedure in the benchmarking process

and can also be used for step six of the 4GL selection process, "develop a ranking or rating system

for the 4GL features so that the most desired features can be differentiated from the least desired"

[GRAY86]. If the checklist is being used for step six, mandatory features should be identified in

this step plus any features which would make a package unacceptable. First, the features of a

4GL that are critical for an application must be identified. We suggest that these features be

identified with an asterisk (*), meaning that the application would not be acceptable without these

features. This also implies that a product would be unacceptable for use if it did not possess

these features. The asterisks represent the highest rating or weighting that a feature can receive and

should be used to "weed out" those products that do not meet the application's critical requirements.

If the checklist is being used for the benchmarking process, the critical features have already been

used to eliminate those products that do not meet the mandatory requirements. At this point an

asterisk is probably not the most useful indicator. The critical features should simply be assigned

the highest rating.

The importance of the other 4GL features relative to the application also has to be determined.

Weights for these other features should be assigned. We suggest a scale of one to five with five

representing the highest rating. Features with a weight of five are most important to the

application. Features with a weight of one are not very important. These might be nice to have

but are not the most important features that are required of the application. A weight of zero

would imply that this feature is not required by the application.

ASSIGNMENT OF WEIGHTS FOR APPLICATION

Weight
1. Operational Features

A. Installation management
B. Ease of installing on multiple platforms

2. Data Management
A. Basic data dictionary

B. Synonym or aliases

C. Headings, titles, or labels

D. Comments or remarks

E. Date formats

F. Time formats

G. Money formats

H. Variable-length fields

I. Capable of handling # chars per field

J. Capable of handling # fields per record

K. Keyed or indexed files

L. Data structure management
M. Ability to read, query, or report from ASCII files

N. Ability to import ASCII files

O. Ability to export ASCII files

11

p. Ability to read, query, or report from

formatted files

Q. Ability to import formatted files

R. Ability to export formatted files

S. AbUity to modify files while loading

T. File check while loading

U. File modification

3i User Interface

A. Capability to create simple menus
B. Capability to create complex menus
C. Default data entry screens provided

D. Capability to create straight text screens

E. Capability to create display screens

F. Data checking on data entry

G. Reverse video control

H. Blinking data entry fields

I. Calculated fields display

J. Display of HELP information on screen

K. CapabOity to generate more complex screens

L. Ability to print screen layout document

4^ Report Writing Features

A. Default report formats provided for paging, dating,

and headings

B. Default report formats provided for summary functions

C. Default report selections provided for ascending sorts

D. Default report selections provided for descending sorts

Complex reporting options for:

E. Row totals and subtotals

F. Percent formats

G. Zero suppression

H. Floating dollar signs

1. Comma option for numeric fields

J. User specified spacing

K. User specified page breaks

L. Table lookups

M. Headings

N. Footers

0. Font selection

P. Odd size printouts

Q. Forms printing

R. Suppressed fields

S. Calculated fields

T. Specific field placement

U. Output device independence (i.e., user could select

screen, printer, or file)

V. Output device adjustments (i.e., user selects screen.

printer, or file and 4GL adjusts for page size,

screen size, etc.)

12

5i Language Features

A. SQL implementation

B. Simple queries on one file

C. AND OR logic - one file

D. Relational join

E. AND OR logic - two files

F. Complex Boolean logic

G. Traps command or statement errors

H. Facilitates correction of errors

I. Compiles code

J. Interprets code

K. Condition logic

L, Looping logic

M. Intrinsic date/time functions (DATE, DAY,
MONTH, etc.)

N. Intrinsic numeric functions (MINIMUM, MAXIMUM,
AVERAGE, etc.)

0. Statistical ftmctions:

Standard deviation

Variance

Regressional analysis

Correlation

Discriminant analysis

Factor analysis

Descriptive statistics

P. Ability to process missing data

6i Graphics Features

A. Ability to create bar graphs

B. Ability to create pie charts

C. Ability to create exploded pie charts

D. Ability to create scatter diagrams

E. Ability to create line graphs

F. Ability to create connected point plots

G. Ability to incorporate trend lines in scatter diagrams

H. Ability to curve fit or smooth

1. Availability of automatic scaling

J. Availability of logarithmic scaling

K. Ability to generate field labels and titles from the data

dictionary

L. Ability to utilize multiple fonts

M. Ability to calculate values to incorporate in the graph

N. Grid option

O. Color option

P. Hatch pattem options

Q. Ability to process missing values

7. Security Features

A. Ability to specify user access

13

B. Ability to specify file security

C. Ability to limit command or procedure usage

D. Ability to specify record access

E. Ability to specify field access

F. Ability to encrypt/decrypt files

G. Ability to encrypt/decrypt data dictionary

H. Default logon procedure

I. User profile

J. Ability to define system administrator

K. Feature restrictions

L. Ability to create a user logon audit file

8i Implementation Features

A. Interface to other software packages

B. Interface to other languages

C. Interface to operating system

D. POSIX compatibility

E. Online HELP
F. Documentation

G. Interface to external editor/word processor

H. Error messages and wamings

9i Application Development

A. Program editor

B. Error messages

C. Branching logic

D. Looping logic

E. Language integration

F. Ability to call subroutines

G. Ability to imbed queries in procedures

H. Ability to share temporary data

I. Ability to create global variables

J. Ability to create local variables

K. Ability to define calculations using field values

4. BENCHMARKING TASKS

The functional benchmarks are divided into numerous tasks. The tasks are organized by the

groupings described previously. The tasks are listed by the appUcation requirement number,

following the same order as the requirements checklist.

Each task should be evaluated on the 4GL's functional ability to perform the task and the ease of

performing the task. We suggest a rating scale of zero to three for this process. For functionality,

a 4GL that could perform all of the functionahty that was required to accomplish the task would
receive a three. If most of the task could be accomplished, a two; some, a one; and if none of

the task could be completed, the 4GL would score a zero. For ease of use/performance, if the task

was completed easily and the 4GL facilitated the process, the 4GL would score a three. If the task

was extremely difficult to accomplish the 4GL might score a one. If it was impossible to complete.

14

it would score a zero. A summary of this suggested rating scale is provided below and at the

beginning of each section.

RATING
SCALE

Functionality

0-none
1-some
2-most
3-alI

Performance/Ease of use

0-not done/impossible

1-poorly/hindrance
2-adequately/helpful

3-easily/very helpful

4.1 Operational Features

Any product must be installed before you can test its capabilities. Some products are much more
difficult to install than others. Because all products are different, we cannot specify commands for

a specific type of instaUation. You must follow the directions supphed with the product.

Your goal during this process is to evaluate the difficulty of the installation, how well the

documentation matches what actually occurs, if the documentation provides enough detail, if the

storage requirements are as advertised, and how difficult it is to recover ft-om any errors that may
occur during installation.

Some applications may require individual installation at numerous sites with different personnel

performing installation. In this case, even more attention should be paid to evaluation results than

what we suggest. For applications that wiU require only one installation and occasional upgrades,

the additional tasks for multiple installation sites should not be required.

RATING
SCALE

Functionality

0-none
1-some
2-most
3-all

lA. Installation management
1. Install the 4GL.

Performance/Ease of use

0-not done/impossible

1-poorly/hindrance

2-adequately/helpful

3-easily/very helpful

FUNC. EASE

2. Rate the documentation (user's guide, reference manual, etc.)

for installation instructions.

Rate the ability to customize the installation, (i.e., does the user

have the option on whether or not to include certain features,

such as the demonstration/tutorial or the graphics feature?)

Total

Average (Total/3) (lA)

IB. Ease of installing on multiple platforms

Install the 4GL on a second system with a different

operating system or different hardware. (IB)

15

4.2 Data Management

A 4GL contains many capabilities for managing and manipulating data. The first of these is the

definition of data structures to be stored in the database. This set of tasks wiU help determine if

the 4GL contains appropriate functionahty to define and manage the data structures needed for the

planned applications.

The second major capability under the data management heading is that of data loading. A separate

section is devoted to testing this aspect. The ability to load data from external files into the

database wiU assist in converting ft"om another application or in accepting data created by other

apphcations. We suggest that data from an existing appUcation be used to perform the data loading

tests. Since the personnel performing the evaluation should be familiar with that data, errors in test

performance will be more readily visible than if "made-up" data were used.

If no specific data comes to mind for performing these tests, we suggest generating at least two
files containing data appropriate for the planned applications. We suggest using a large file with

two to three thousand records, and a smaller file, with each record containing at least several

alphanumeric data elements and several types of numeric data elements.

At first glance, it may appear that some of the tests can be combined. However, evaluators may
run into problems with different 4GLs due to limitations of each particular 4GL in performing

combined tasks. Errors encountered in evaluation may be due to combinations of effects. In such

cases, it may be difficult, if not impossible, to ascertain what the real problem is and how to

overcome it. For this reason, the tests are specified individually to control as much extemal

influence as possible.

Functionality Performance/Ease of use

RATING 0-none 0-not done/impossible

SCALE 1-some 1-poorly/hindrance

2-most 2-adequately/helpful

3-aII 3-easiIy/very helpful

2A. Basic data dictionary FUNC. EASE
1. Using whatever method is suggested by the vendor (e.g., screens, forms,

prompts, etc.), define a sequential file (FILE A).

2. Define a file with at least one key or index made up of at least one

data element (FILE B).

3. Define a numeric data element containing a decimal point.

4. Define an integer data element.

5. Define a data element containing only alphabetic characters.

6. Define a data element containing both alphabetic and numeric characters.

16

7. List all information pertaining to FILE A and FILE B including the file

name, file organization, data element names, data element types, and

sizes on the terminal screen .

8. List all information pertaining to FILE A and FILE B including the file

name, file organization, data element names, data element types, and

sizes on a printer .

Total

Average (Total/8)

2B. Synonym or aliases

Define a synonym or alias for a data element in FILE A.

2C. Headings, titles, or labels

Define a heading, titie, or label for a data element in FILE A.

2D. Comments or remarks
Define a comments or remarks section for the file or a data element

in RLE A.

2E. Date formats

Define a data element in FILE A with a date format.

2F. Time formats

Define a data element in FILE A with a time format.

2G. Money formats

Define a data element in FILE A with a money format.

2H. Variable-length fields

Define a data element in FILE A with a variable length.

21. Capable of handling # chars per field

Define a numeric element with the size of the largest number that will

most likely be used in an application or a character element with

the largest number of characters that will be used.

2J. Capable of handling # fields per record

Define a sufficient number of data elements in FILE A and FILE B to

determine if the 4GL can accommodate the largest number of fields

required per record.

2K. Keyed or indexed files

1. Define a sequential file (FILE C).

2. Define a file with at least one key or index made up of at least one

data element (FILE D).

17

3. Define a key in FILE D that is the same as the key in FILE C.

4. Define a key in FILE D that is different from all previous keys.

5. Define a key in FILE C that is made up of at least two concatenated

data elements.

Total

Average (Total/5)

2L. Data structure management
1. Delete a non-key data element from FILE D.

2. Delete a key data element from FILE D.

3. Delete a data element from FILE C.

4. Delete FILE C.

5. Copy FILE A description to FILE E.

6. Copy FILE B description to FILE F.

7. Delete FILE E and FILE F.

8. Edit a data description by changing the spelling of a field/data element

name.

9. Change the format of a field/data element.

Total

Average (TotaV9)

2M. Ability to read, report, or query from ASCII files

1. Define a file structure for an external ASCII file (FILE 1) to be loaded.

2. Read the external file and create a report or query from the extemal

file's data without creating a 4GL formatted fUe. (If you could not

create a report or query from the extemal file, list the first 10 and

last 10 records of the extemal file using any means appropriate.)

Total

Average (Total/2)

2N. Ability to import ASCII files

1. Define a file structure for a 4GL database that will accommodate FILE 1.

18

2. Load the data from the external file into the 4GL database structure

creating the 4GL internal file, FILE 2.

3. To ensure that the data is loaded correctly, repeat the same report or

query that you created in task 2M and compare the data. (If you could

not create a report or query from an external file, list the first 10 and

last 10 records of the database file (FILE 2) using the 4GL. Compare
the data in this report with the data in the external file.)

Total

Average (Total/3)

20. Ability to export ASCII files

Save the results of the previous query to an external ASCII file. Type
or print the external file to compare results.

2P. Ability to read, report, or query from formatted files

Repeat tasks 2M for all file formats required.

2Q. Ability to import formatted files

Repeat tasks 2N for aU file formats required.

2R. Ability to export formatted files

Repeat tasks 20 for all file formats required.

2S. Ability to modify files while loading

1. Define an intemal file (FILE 3) stmcture similar to the external file

structure of FILE 1, and augment it with at least one data element that

is not in the extemal file structure.

2. Load data from the extemal fiile (FILE 1) into the augmented 4GL
database file (HLE 3).

3. Define an intemal file (FILE 4) structure similar to the extemal file

structure of FILE 1, but rearrange the order of the data elements.

4. Load the data from the extemal file (FILE 1) into the rearranged 4GL
file (FILE 4).

Total

Average (Total/4)

19

2T. File check while loading

Load descending sorted data from the external file into an ascending

sorted internal file without first deleting the data from the internal file.

(Rate the functionality 3, if the duplicates are rejected.) (2T)

2U. File modification

1. Display basic attributes of a file, including the file size, number of

records, time the file was created, time the file was last modified or

accessed.

2. Display file usage information including number of records added,

deleted, or modified.

3. Add a record to the file. Display the record.

4. Modify a record in the file. Display the record.

5. Delete a different record in the file.

6. List the attributes of the file including the file size, number of records,

time the file was created, time the file was last modified or accessed.

Make certain that the changes were reflected in the hsting.

7. Display the file usage information including number of records added,

deleted, or modified to make certain that the changes were reflected

in the Usting.

Total

Average (Total/7) (2U)

4.3 User Interface

Screens and menus are the primary means that a user has of interacting with an appUcation. For

this reason, a 4GL must have a diversified and robust set of screen formatting capabilities. These

capabilities are generally grouped in two categories: screen formatting commands and data

manipulation commands. Screen painters are often used to implement these capabilities within a

4GL. Text, symbols, and data input/output areas are defined on a terminal screen through

placement of a cursor and the use of predefined commands or control keys.

Functionality Performance/Ease of use

RATING 0-none 0-not done/impossible

SCALE 1-some 1-poorly/hindrance
2-most 2-adequately/helpful

3-aIl 3-easily/very helpful

3A. Capability to create simple menus FUNC. EASE
1. Define a default menu with at least two selections.

20

2. Define a second default menu to be executed as one of the choices

of the first menu.

Total

Average (Total/2)

3B. Capability to create complex menus
1. Define a vertical menu containing at least two selections.

2. Define a horizontal menu containing at least two selections.

3. Define a menu that uses function keys or control keys as the means
of selecting.

4. Define a menu that uses cursor positioning as the means of selecting.

5. Define a menu that uses character strings or numbers as the means
of selecting.

6. Define a pull-down menu with at least two selections.

7. Define a menu with text, menu background, and menu border in

different colors.

8. Define a menu with more entries than can be displayed on the screen

at one time.

9. Define a menu that scrolls according to the location of the selection

cursor (i.e., on a vertical menu, some -of the selections may not be

visible through scrolling of the selections off the top or bottom of the

menu. A horizontal menu may scroll to the left and right).

10. Define a menu that allows speed searching of the selections (i.e., the

selection cursor advances to the next selection starting with the

character entered by the user).

Total

Average (Total/10)

3C. Default data entry screens provided

Access a default data display screen containing at least two data

elements and the names associated with the data elements.

3D. Capability to create straight text screens

Define an information screen containing text only (no records or

variables).

21

3E. Capability to create display screens

1. Define a screen and associated process to display a record in a file

when the screen is executed.

3F. Data checking on data entry

1. Access a default data entry screen containing at least two data element

input/display areas and the names associated with the data elements.

(These data elements may be data elements defined in a previous test

for file definition or data loading.)

2. Enter an alphanumeric string in a numeric data entry area to ascertain

if the data is accepted or not.

3. Enter a numeric string in an alphanumeric data entry area to ascertain

if the data is accepted or not.

4. Enter a non-date string in a date entry area to ascertain if the data is

accepted or not.

5. Using a data element for which an entry is required, try to bypass the

field without entering a value.

6. Using a data element for which a default entry is defined, bypass the

entry field without entering a value to determine if the default value

has been automatically displayed.

Total

Average (Total/6)

3G. Reverse video control

Define a reverse video data entry area.

3H. Blinking data entry fields

Define a blinking data entry area.

31. Calculated fields display

Define a data display area with the contents computed from other data

entry areas (i.e., such as a total, balance, or extended amount).

3J. Display of HELP information on screen

1. Define a data display window that contains help information for a

particular data entry area.

2. Define a help display area on screen.

Total

Average (Total/2)

22

3K. Capability to generate more complex screens

1. Define a screen containing at least one display-only data element, one

data entry element, one hidden data element, and one update-only data

element for each of these data types: integer, floating point,

alphanumeric, money, and date/time.

2. Define a display area on the screen that remains hidden until needed, as

opposed to an area that is visible on screen at all times.

3. Define an array data entry area (i.e., multiple columns or rows with

repeating data elements, such as may be found on a multiple-line-item

purchase order or parts list).

Total

Average (Total/3) (3K)

3L. Ability to print screen layout document
Document tiie screen format by printing a copy of the screen

commands or screen layout on a printer. (3L)

4.4 Report Writing Features

Generally, a 4GL provides a default report format for simple reports so that the user can issue a

query and have the results printed as a report without having to specify elements of the report such

as paging, date, page break, column position, etc. These attributes are tested first. In addition, the

4GL provides capabilities for specifying detailed report elements, if the user desires. Tasks are

included for testing a number of these capabilities. Only those tasks that are required for the

application need to be executed.

Functionality Performance/Ease of use

RATING 0-none 0-not done/impossible

SCALE 1-some 1-poorly/hindrance

2-most 2-adequately/helpful

3-all 3-easily/very helpful

4A. Default report formats provided for paging, dating, and headings

Using as many default instructions as possible, generate a report

including at least two data elements. Specify only the data elements

to be printed. Let the 4GL determine element placement, paging, and

headings. (4A)

4B. Default report formats provided for summary functions

1. Generate a default report including a character element and at least one

numeric data element and compute subtotals and totals on this

numeric data element.

2. Generate a default report that counts the number of records per group

(subsort) and per report.

23

3. Generate a default report that computes the average value of a numeric

column by group and by report.

Total

Average (Total/3)

4C. Default report selections provided for ascending sorts

Generate a default report including at least one character data element

and specify an alphabetic or ascending sort on this data element.

4D. Default report selections provided for descending sorts

Generate a default report including at least one numeric data element

and specify a descending sort on this data element.

4E. Complex reporting options for row totals and subtotals

Create a report with multiple columns of numeric data elements.

Generate and write row totals and subtotals.

4F. Reporting options for percent formats

Compute a percentage of two columns by using a built-in percent

function and total the results.

4G. Reporting options for zero suppression

Display a number that is less than the maximum number of digits that

can be displayed and suppress the leading zeros.

4H. Reporting options for floating dollar signs

Display a number in a numeric data element with currency format.

Multiply the number by 10 and by 1000. Print the results.

41. Comma option for numeric fields

Create a report with at least one numeric field. Display the field with

commas separating every three digits. Display the field without commas.

4J. Reporting options for user specified spacing

Generate a report that is single spaced with a blank line after each

subtotal and containing two blank lines after each total.

4K. Reporting options for user specified page breaks

1. Generate a report with a page break after each total.

2. Generate a report with a page break after each subtotal.

3. Generate a report with a page break after 40 lines.

24

4. Generate a report with a page break after the value of a sort element

has changed.

Total

Average (Total/4)

4L. Reporting options for table lookups

Create a report with a field that is referenced or cross-referenced ft^om

another file. (An example would be to list a column with the state

name when the main file only has state codes.)

4M. Ability to generate report headings

1. Create a report with a header that appears only at the beginning of the

report.

2. Create a report with a header that is displayed at the top of each page

of the report.

3. Create a report with a header that is printed each time the grouping

value changes, (i.e., for a number of records that are grouped by a

common field value, a header that is displayed before each group).

Total

Average (TotaV3)

4N. Ability to generate report footers

1. Create a report with a footer that is displayed only at the end of the

report.

2. Create a report with a footer that is printed at the bottom of each page

of the report.

3. Create a report with a footer that is printed after each group (i.e., for

a number of records grouped by a common field value, a footer that is

displayed after the last record in each group).

Total

Average (Total/3)

40. Reporting options for font selection

Create a report with multiple fonts (e.g., large font for headings,

smaller font for detail lines).

4P. Reporting options for odd size printouts

Create a report which exceeds the normal page size (e.g., 220 characters

across the page and 90 lines per page).

25

4Q. Reporting options for forms printing

Create a form that incorporates line drawings with data from a database.

Print the form with the data. (4Q)

4R. Reporting options for suppressed Helds

1. Create a report that is sorted on one field. Sort the report by that field

and suppress printing the field when repeated values occur,

2. Using the same report, alter the setting so the sort field is printed on

every occurrence.

Total

Average (Total/2) (4R)

4S. Reporting options for calculated fields

Create a report with a numeric field value. Define a field in the report

that is the result of some calculation involving the first field. (4S)

4T. Specific field placement

Define a report with specified field placement (i.e., the user specifies x-y

coordinate or column-row values for field placement rather than using

default values). (4T)

4U. Output device independence

Using any of the reports, print the report to the printer. Display the

same report, without having to respecify the contents, on the screen. (4U)

4V. Output device adjustments

Using any report of at least 100 lines, print the report to the printer

and display it on the screen. Did the 4GL adjust the page breaks, wrap

arounds, headings, etc? (4V)

4.5 Language Features

The goal in this section is to test the language capabilities of the 4GL that are appropriate for your

requirements. Keep in mind that the requirements may change over time. For example, a friendly

novice level interface is nice in the beginning until users know the 4GL. After the 4GL has been

used for a while, the novice level interface may become burdensome and cumbersome. It becomes

aggravating to have to go through ten menus to select choices when you need only to enter three

commands. Thus, you need to analyze the requirements to insure that the 4GL has the flexibility

you will need not only from an initial perspective but also fi*om a long range perspective.

This section mainly tests the query language or command language functions of a 4GL. Some
4GLs have a separate procedural language that is for developing programs, or have added

syntax/commands for programming logic. We have tried to separate the two where possible.

Technically the functions may be similar but the ease of use may be quite different. For example,

some 4GLs have a condition statement that can be added, often by menu selection, to a query or

report, e.g., IF code = 123, WHERE salary <50000, FOR name = "Smith", etc., which is different

26

from programming IF..THEN..ELSE logic to specify the execution of different sections of a

program. The ease of use rating might be very different. The programming language functions

are tested in the application development section.

Functionality Performance/Ease of use

RATING 0-none 0-not done/impossible

SCALE l-some 1-poorIy/hindrance

2-most 2-adequateIy/helpful

3-all 3-easiIy/very helpful

5A. SQL implementation

1. Complete tasks 5B through 5F using SQL commands. (See [FIPS127]

"Database Language SQL.") Rate this task for overall implementation

and integration with the rest of the 4GL. If you want to test other

query capabilities of the 4GL (e.g., non-SQL interface) repeat these

tasks and record a second set of numbers. (5A)

5B. Simple queries on one file

1. Query a file to find all records containing a specific non-null string.

2. Query a file to find all records not containing a specific non-null string

(the complement of the previous test).

3. Query a file to find all records within a specified range.

Total

Average (Total/3) (5B)

5C. AND OR logic - one file

1. Query a file to find all records containing one data element value AND
another element value.

2. Query a file to find all records containing one data element value OR
another element value.

Total (5C)

Average (Total/2) (5C)

5D. Relational join

Relationally join two files without creating a third physically merged file. (5D)

5E. AND OR logic - two files

1. Query the joined files to find all records containing one data element

value from one file AND one data element value from the other file

(i.e., A AND B).

27

2. Using the same joined files, query the files to find all records containing

one data element value fi-om one file OR another data element value

ft-om the other file (i.e., A OR B).

Total

Average (Total/2)

5F. Complex Boolean logic

1. Query the result of relationally joining three files to find all records

containing one data element value from the first file AND one data

element value from the second file OR one data element value from

the third file (i.e., A AND (B OR Q).

2. Query the same joined fUes for one data element value from one file

OR one data element value from the second file AND one data element

value from the third file (i.e., A OR (B AND C)).

3. Query the joined files to find all records containing one data element

value from one file AND one data element value from the second file

AND NOT one data element value from the third file. Print or display

the results showing data elements from all three files (i.e., A AND
(B AND NOT O).

4. Query the same joined files for one data element value from one file OR
one data element value from the second file AND NOT one data element

value from the third file. Print or display the results showing multiple

elements from aU three fHes (i.e., A OR (B AND NOT C)).

Total

Average (TotaV4)

5G. Traps command or statement errors

Enter a command or statement that contains a known identifiable error

such as a keyword misspelling, illegal use of an operator, etc., to see

how the 4GL traps and informs the user of the error.

5H. Facilitates correction of errors

Correct the error from the previous task and resubmit the command to

see how the 4GL facilitates the correction of errors.

51. Compiles code

Compile a number of commands or statements. (This may not be possible

with some 4GLs that run only in interpretive mode. If so, rate

functionality and ease as 0).

5J. Interprets code

Interpret a statement. (This may not be possible with some 4GLs that

run only in compiled mode. If so, rate functionaUty and ease as 0.)

28

5K. Condition logic

1. Execute a simple condition statement with your query or report request.

2. Execute a simple condition statement with altemative true and false

outcomes.

3. Execute a compound condition statement.

4. Execute a compound condition statement that produces the complement
result of the previous task.

Total

Average (Total/4)

5L. Looping logic

Execute an iterative loop structure such as repeating until the number
of records retumed equals 50. Do this as part of a query or report,

i.e., do not program.

5M. Intrinsic date/time functions

1. Display the values of intrinsic date/time functions such as DATE, DAY,
MONTH, DAY OF WEEK, DATE PLUS-OR-MINUS A TIME PERIOD,
WEEK, QUARTER, YEAR, TODAY'S DATE, TIME.

2. Store the results of intrinsic date/time functions in a database.

Total

Average (TotaV2)

5N. Intrinsic numeric functions

1. Display the values of intrinsic descriptive data functions such as

MINIMUM, MAXIMUM, AVERAGE, COUNT, TOTAL, SUBTOTAL.

2. Store the results of intrinsic descriptive data functions in a database.

Total

Average (Total/2)

50. Statistical functions

1. Perform the statistical calculations using intrinsic statistical routines if

available. Check results for accuracy. Repeat task for each function

required. (Add other functions as required by your apphcation.)

Standard deviation

Variance

29

Regressional analysis _

Correlation _

Discriminant analysis _

Factor analysis _

Descriptive statistics _

2. Store the statistical results generated in #1 to a database. Repeat for

each function required. (Add other functions as required.)

Standard deviation _

Variance _

Regressional analysis _

Correlation _

Discriminant analysis _

Factor analysis _

Descriptive statistics _

Total _

Average (Total/#)

5P. Ability to process missing data

1. Create or use a file with missing values in a numeric field. Compute the

average of this numeric field including the records with missing values. _

2. Using the same file, average the numeric field excluding the records with

missing values. _

3. Compare the two results. If the 4GL has correctly processed missing values

the average excluding the missing value records wiU be higher than the

average including the missing value records. If it correctly processed the

missing values score a three for fiinctionaUty. If it did not, score zero. _

Total _

Average (Total/3) _

30

4.6 Graphics Features

The goal of this section is to evaluate the graphics features that are incorporated in the 4GL. Some
4GLs actually link to separate graphics software while others have integrated aU of the graphics

functions with the database and language fiinctionality of the 4GL. You need to evaluate the ease

of use of various features, how much effort, rekeying, etc., it takes to generate certain kinds of

graphs. You also need to evaluate the quality of the graphs generated on the screen and in a

printed version, discounting the quality of the printer itself.

6A. Bar graph
Create a bar graph from data in the database. (6A)

6B. Pie chart

Create a pie chart from data in the database. (6B)

6C. Exploded pie chart

Create an exploded pie chart from data in the database. (6C)

6D. Scatter diagram
Create a scatter diagram from data in the database. (6D)

6E. Line graph
Create a line graph from data in the database. (6E)

6F. Connected point plot

Create a connected point plot from data in the database. (6F)

6G. Trend line

Create a scatter diagram that incorporates a trend line. (6G)

6H. Curve fitting

Create a graph that requires curve fitting or smoothing. (6H)

61. Automatic scaling

Create one graph with data points and a second graph with the data

points multiplied by 1000 to demonstrate automatic scaling. (61)

6J. Logarithmic scaling

Create a graph whose data points would require logarithmic scaUng. (6J)

6K. Labels and titles

Generate field labels and titles for any graph from the data dictionary

(do not reenter labels and titles). (6K)

Functionality Performance/Ease of use

RATING
SCALE

0-none
1-some
2-most
3-all

0-not done/impossible

1-poorly/hindrance
2-adequateiy/helpful

3-easily/very helpful

31

6L. Multiple fonts

Create a graph which utihzes multiple fonts (one font for titles, another

for labels, etc.) (6L)

6M. Calculated values

Create a line graph with one line representing computed values (such

as a ratio of two fields in the database). (6M)

6N. Grid option

Add a grid pattem to any graph. (6N)

60. Color option

Add graph colors for either print or display. (60)

6P. Hatch pattern options

Change the hatch pattems for any bar graph. (6P)

6Q. Ability to process missing values

Create a line graph representing a statistic that includes processing

missing values. (6Q)

4.7 Security Features

These tasks test some of the basic security features of most 4GLs. Most of these features are

implemented very differently from product to product. Some 4GLs have separate workspaces

identified for each user so identification and password protection are done at this level. Others

require identifiers and passwords for each file or procedure. Some 4GLs have various levels of

security allowing quite complex security while others provide only read/write protection for files.

These tasks were not designed to represent ALL of the security tasks that could be tested. They
were designed to test the more common kinds of security that is generally provided by 4GLs. You
may want to add additional tasks if additional levels of security are required for your application.

For example, to provide a minimum test for encrypted files, you may want to run an analysis of

the character distribution of the files before and after encryption. You may also want to tailor

these tasks to your particular application. For example, the section on command security could be

altered to test protection fi-om use of specific commands or programs that are of interest for your

application.

One other important part of security has not been included in these tasks, backup and recovery.

Since backup and recovery are often dependent on other facilities of the hardware and software

environment it is difficult to generalize tasks that could run on microprocessor versions of the 4GL
and be an indication of mainframe or minicomputer versions of the same 4GL. You could tum
off the power in the middle of mnning a query to analyze what happens to the data but this would

not necessarily indicate what would happen with the same 4GL in a different operating environment.

Some 4GLs running on mainframes or minis wiU mark data that has been involved in a crash,

provide rollback facUities, and issue wamings that there has been a crash. There are few that offer

this protection in the microcomputer versions. Networked versions of the 4GL also offer different

facilities than stand-alone micro versions.

32

Since this area cannot be tested as part of the functional benchmarks, we recommend that you talk

to the vendor and other users of the 4GL under consideration, to gather information about backup

and recovery on the hardware and software environment you require. Actual case studies from

other users of what happened when the power went off or when the disk crashed would be

invaluable.

RATING
SCALE

Functionality

0-none
1-some
2-most
3-alI

Performance/Ease of use

0-not done/impossible

1-poorly/hindrance

2-adequateIy/helpful

3-easily/very helpful

7A. Specify user access

Grant unlimited file rights to a specified user. Access the file as the

user. Attempt to access the file as a different user to ensure that access

is denied. (7A)

7B. Specify file security

1. Limit a user's file rights to read only privileges. Display the file.

Attempt to add a record to see if the request is denied. Attempt to delete

a record; to edit a record.

2. Establish write privileges for a user. View the file. Add a record.

Edit data in a record. Delete a record.

3. Deny access to a file for read or write privileges for a user. Access

the system as this user. Attempt to read or query the file to verify that

this is not possible. Obtain a listing or access a screen with the database

files listed to ensure that the file is not listed.

Total

Average (Total/3) (7B)

7C. Limit command or procedure usage

1. Deny a user's rights to update a file. Access the system as the user.

Attempt to change or modify a record to verify that this is not possible.

2. Grant a user the right to retrieve no more than 10 records fi"om any

query. Attempt to display more than 10 records to determine that this

is not permissible.

3. Create a command procedure, subroutine or program to make a listing

of the files in the database. Set the security to prevent a user from

running this procedure. Access the system as this user and attempt to

run the procedure to ensure that this is not possible.

33

4. Block a user from using the program editor to change any program

(restrict the use of the EDIT command). Access the system as this

user and attempt to edit a program file.

Total

Average (Total/4)

7D. Specify record access

1. Place limitations on the accessibility of certain records in a file. Display

the file to make sure restricted records are not shown.

2. Join the file with limited record access to a file that has unlimited

access. Display the contents of the joined files to see if the records

remain hidden. (A score of three should be given if the record

remains hidden, zero if the record is now accessible.)

Total

Average (Total/2)

7E. Specify field access

1. Limit the access capabilities of one field in a file. Display the contents

of the file to make certain the field does not show. If possible, list the

structure or dictionary of the file to see if the field is hidden,

2. Join the file with a limited field to a file that has unlimited access.

Display the contents to see if the field is still hidden. (A score of three

should be given if the field remains hidden, zero if the field is now
accessible).

3. Grant a user the right to update only certain fields in a file (i.e.,

some fields cannot be updated).

Total

Average (Total/3)

7F. Encrypt/decrypt files

1. Encrypt a data file. Attempt to view the file (type or list from the

operating system) without decrypting to see if the file appears readable.

2. Decrypt the data file. View the fUe to make certain the data is readable.

Compare with original data to ensure the file contents were not altered.

Total

Average (Total/2)

34

7G. Encrypt/decrypt data dictionary

1. Encrypt the data dictionary. Attempt to view the data dictionary to see

if it appears readable.

2. Decrypt the data dictionary. Compare with the original data dictionary

to make certain it is unchanged.

Total

Average (Total/2)

7H. Default logon procedure

Create a procedure or program that is automatically executed whenever

the 4GL is started. Have the logon procedure or profile tailor the

system to the user's requirements.

71. User profile

Define a user profile to Umit access to the system, (i.e., accessing the

4GL requires the user to enter a user ID and/or password before access

to the system is granted. Only acceptable ID's/passwords are granted

user privileges). Note: Some 4GLs do this automatically, some have to

be programmed.

7J. Define system administrator

Establish a user ID and/or password for a user or users that grants this

user the right to establish IDs, passwords, file access, etc., for other

users. Evaluate the protection for this user ID and password. (Are the

ID and password encrypted? Are they missing from the default listing

of users, etc?)

7K. Feature restrictions

1. Restrict a user, based on user ID and/or password, to only one part of

the 4GL (e.g., the report writer). Log in to the 4GL as the user and

attempt to access other parts of the 4GL (e.g., screen generator) to

determine if access is denied.

2. Change a user's ID/password without having to redefine the restrictions

imposed on the user. Log in to the 4GL with the new ID/password and

make certain the same restrictions are still valid.

3. Delete the user's ID/password. Attempt to log in to the 4GL with the

password to make sure access is now denied.

Total

Average (TotaV3)

35

7L. Logon audit Hie

Create a file that records the name of the user, the time and date the

user logged on, and the time the user logged off. Display the user

logon file and verify that the contents are correct. (7L)

4.8 Implementation Features

A number of the tasks grouped under implementation features, such as rating the documentation,

on-line help, diagnostics and messages, are not really rating one specific task but rating the usage

of these features in general. Others require interfacing to other languages or other software.

Whatever interfaces are required by your application should be used for these tasks.

Functionality Performance/Ease of use

RATING 0-none 0-not done/impossible

SCALE 1-some 1-poorly/hindrance

2-most 2-adequately/heIpfuI

3-all 3-easily/very helpful

8A. Interface to other software packages

1. Interface to an extemal software package (a graphics package, a statistical

analysis package, etc.) without having to exit the 4GL with a "quit" or

"end" type of command.

2. Move data from the 4GL to the other package and display the resulting

data. (Did the data dictionary information transfer or did the data have

to be redefined? Were the data types correct, i.e. integers stayed integers,

numeric were not changed to character, etc.)

Total

Average (Total/2) (8A)

8B. Interface to other languages

Execute a procedure or program written in a different language (Fortran,

C, another 4GL) without having to exit the 4GL with a "quit" or "end"

type of command. (The execution command can be in a command mode
if available or imbedded in a 4GL program.) (SB)

8C. Interface to operating system

Access the operating system (i.e., such as hsting a file directory)

without having to exit the 4GL with a "quit" or "end" type of command. (8C)

8D. POSIX compatibility

Execute the 4GL in a POSIX conforming environment. (See [FIPS151],

"Portable Operating System Interface for Computer Environments.") (8D)

36

8E. On-line HELP
Access on-line help from the 4GL and display it on the screen. Also

remember if you used the on-line help for other benchmarking tasks

and if it was helpful. (If on-line help is not available, rate this zero.) (8E)

8F. Documentation
Rate the helpfulness of the documentation. Was it up to date with the

current version? Was it complete? Did the 4GL do what the

documentation said it would do? Was it easy to understand? (8F)

8G. Interface to external editor/word processor

1. Generate commands, programs, or file descriptions, etc. in a word
processor or different program editor. Execute the code to ensure the

4GL accepts it.

2. Utilize an extemal editor or word processor without having to exit the

4GL with a "quit" or "end" type of command.

Total

Average (Total/2) (8G)

8H. Error messages and warnings

1. Try to issue a query or report request with an illegal field name. Was
an error message displayed that was meaningful and helpful?

2. Based on experience from other tasks, are warning messages displayed

informing the user that a query or other task might take a long time,

that a certain action might delete a file, etc.?

Total

Average (Total/2) (8H)

4.9 Application Development

There are certain parts of the 4GLs that are difficult to assess in a piecemeal fashion. A number
of these are part of the process of actually building an application. The pieces of an application,

such as screens, reports, etc., can be tested as we have listed in appropriate sections of this report.

What is more difficult to specify in individual tasks is the functionality of the 4GL to facilitate

putting these pieces together to build an application. This functionality incorporates the robustness

of the programming or procedural language with the ability to integrate the language with other

segments that may have been generated by the nonprocedural capabilities of the 4GL.

Some 4GL products have been joined with CASE products or other software design tools. This

section is not going to suggest rating these capabilities because they are outside of the scope of

most 4GLs. This section also does not attempt to retest those capabilities that have been Listed in

other sections of this report. Instead it focuses on areas that cannot be tested except by building

an application. For example, some 4GLs have conditional logic that can be used in report or query

requests (IF a value = x, WHERE a code is less than some number, IF the report does not exceed

37

a record limit, etc.). This logic and syntax is sometimes quite different from logic which indicates

branching to different parts of a program (IF something occurs then execute a subroutine, or

process a different section of the program).

We suggest that you design and build a very small application that would be essentially a small

prototype of your apphcation, including representative files, reports and queries. The application

that we used, described below, was developed in an average of four hours using several different

4GL products. The application needs to be developed before the tasks can be rated.

EXAMPLE APPLICATION

Our application was based on two very small (only 10 records each) files. One file had an

identifier (employee identification number), employee name, and salary. The other file had cost

centers, identifiers, and number of hours. The basic idea was that most applications would have

some file modifications (changes to records, adding records, or deleting records) and some queries

or reports. Our application required posting of hours to modify the database, and reporting the

records by joining the files and multiplying the salary times the number of hours. We reported

the records by employee and by cost center. A general description is given in figure 2.

Figure 3 gives the description and contents of the two files that were used for the application.

These files were kept very simple since these tasks were not designed to test the file handling

capabilities of the 4GL, but were designed to test the procedural language capabilities. Figure 4

is a sample of the kinds of screens that we developed and figure 5 is a sample of one of the

reports. We have generalized these figures to represent the results of many 4GLs. They are not

actual printouts of any specific 4GL product.

Even a small application tests some of the procedural language capabilities of the 4GL. The
program must be able to provide the three basic constructs of sequence, iteration, and selection.

The program can incorporate screens, menus, or reports that come from the nonprocedural part of

the 4GL but the screens, menus, and reports must be integrated with programming logic to create

a stand-alone application. We also included calculations and doUar figures with floating dollar

signs because these are handled differently by many 4GLs and are also typical of most business

applications.

After a small application has been developed, you should be able to give ratings to the following

tasks. We strongly suggest that you use an application that is typical of your large application or

a small prototype of your application. The requirements should be kept to a minimum, however,

to prevent these tasks from being overburdensome. If you have specialized programming

requirements, then we suggest that you add tasks to this area.

Functionality Performance/Ease of use

RATING
SCALE

0-none
1-some
2-most
3-alI

0-not done/impossible

1-pooriy/hindrance

2-adequately/helpful

3-easily/very helpful

9A. Program editor

Rate the functionality and ease of use of the 4GL program editor. (9A)

38

Welcome Screen

File Modification Report or Query

Add data

Modify data

Delete data

Report A
Query A

Figure 2. Test Application

TEST APPLICATION FILES

DESCRIPTION DESCRIPTION
Filename : EMPLOYEE Filename

:

COSTCEN
Field 1: ID - 4 characters Field 1: ID - 4 characters
Field 2: LASTNAME - 10 characters Field 2: CEN - 4 characters
Field 3: FIRSTNAME - 10 characters Field 3: HRS - 3 numbers with
Field 4: SALARY - 5 numbers with 0 decimal places

2 decimal places
CONTENTS

CONTENTS ID CEN HRS
ID LASTNAME FIRSTNAME SALARY 107 0101 0

107 Madison Michele 07.82 210 0202 0

210 Eisenhower Murph 07.82 312 0101 0

312 Jones James 09.68 413 0202 0

413 Truman Elizabeth 09.68 514 0301 0

514 Wilson John 11.85 610 0301 0

610 Swivit Rodney 13.04 715 0101 0

715 Harrison Suzanne 14.33 807 04P1 0

807 Roosevelt John 17.17 907 0202 0

907 Garfield Elizabeth 20 .42 1015 0101 0

1015 Harrison James 24 .13

Figure 3. Application Files
39

WELCOME TO THE 4GL TEST SYSTEM!

YOU MAY: 1) Post hours for employees

2) Report by employee or cost center

3) Exit the system

MAKE YOUR SELECTION (enter 1, 2, or 3):

Figure 4, Application Screen

TEST APPLICATION REPORT SAMPLE

REPORT BY COST CENTER

CEN ID LASTNAME FIRSTNAME HRS DOLLARS

101
21
71

101
TOTAL

0

5

5

FOR

107

COST

Madison Michele
Eisenhower Murph 20
Harrison Susanne 5

Harrison James 22
CENTER 73

26
$156
$71

$530
$962

$203
40

65
86
23

32

202
21
90

TOTAL

0

7

FOR

413

COST

Truman
Eisenhower
Garfield

CENTER

Elizabeth
Murph 42

Elizabeth 24
101

35
$328
$490

$1157

$338
44

08

32

80

301
61

TOTAL
0

FOR

514

COST

Wilson
Swivit

CENTER

John
Rodney 8

60

52
$104
$720

$616
32
52

20

401
TOTAL FOR

715
COST

Harrison Susanne
CENTER 12

12

$171
$171

96

96

TOTAL 246 $3012 03

Figure 5. Application Report

40

9B. Error messages

Rate how helpful the error messages were. When you ran the appUcation,

did you get messages that merely said there is an error #xxx, or did it

explain what the error was and peihaps contain syntax suggestions, line

numbers of the errors, etc?

9C. Branching logic

Were you able to move to different sections of the program to reflect

choice selection?

9D. Looping logic

Could you execute a process multiple times using iteration, (e.g.,

multiple reports, multiple records, etc.)?

9E. Language integration

Was the programming language consistent with the language you used

for conmiands or similar to the language of menus or screens provided

in the nonprocedural parts of the 4GL? If the syntax and functionality

are consistent across the 4GL rate the functionality three.

9F. Ability to call subroutines

1. Enter a block of statements and store them as a procedure or program
(PROCEDURE A). Execute PROCEDURE A.

2. Enter another stored procedure (PROCEDURE B), one statement of

which executes PROCEDURE A. Execute PROCEDURE B.

Total

Average (Total/2)

9G. Ability to imbed queries in procedures

Create a report procedure, REPORT A, containing a conditional

statement to compute a SUM and statements to query a data file for a

subset of the file's data.

9H. Ability to share temporary data

Execute a procedure that extracts a temporary subset of data from a file

and makes this data available to another stored procedure within the 4GL.

9L Ability to create global variables

Define global memory variables (temporary variables which are accessible

to more than one program).

9J. Ability to' create local variables

Define local memory variables (temporary variables which are accessible

only to one program).

9K. Ability to define calculations using Held values

Define a memory variable that is a result of a calculation between two

fields.

41

5. 4GL BENCHMARKING SUMMARY

The benchmarking summary sheet can be used for the final step in evaluating specific products.

The requirements weights determined how important a feature was to the application. The scores

on the functional benchmark tasks indicated how well the 4GL exhibited the feature and how easy

it was to perform the task or tasks for the feature. Taken together the results can assist a decision

maker in the final selection of a 4GL product.

The weights from the requirements checklist and the ratings or average ratings of the benchmark
tasks should be transferred to this summary sheet. An overall rating can be obtained by multiplying

the weights times the sum of the task points and summing these points for each product evaluated.

An example of this summary process is given below using part of data management as an

illustration.

STEP ONE - TRANSFER REQUIREMENT WEIGHTS

A. Basic data dictionary

B. Synonym or aliases

C. Headings, titles, or labels

D. Comments or remarks

E. Date formats

F. Time formats

Wt. mult, by
Weight FUNC EASE FUNC+EASE

_5

_1

4

_3

4

0

STEP TWO - TRANSFER BENCHMARK TASK SCORES

Wt. mult, by

Weight FUNC EASE FUNC+EASE

A. Basic data dictionary _5 _3_ _2.5

B. Synonym or aliases _1 _3_ _1_

C. Headings, titles, or labels 4 _0_ _0_

D. Comments or remarks _3 _3_ _3_

E. Date formats 4 _2_ _3_

F. Time formats 0 _0_ _0_

42

STEP THREE - MULTIPLY WEIGHT TIMES SUM OF FUNC AND EASE - SUM ALL

Wt mult, by

Weight FUNC EASE FUNC+EASE

A. Basic data dictionary _5 _3_ _2.5 _27.5

B, Synonym or aliases _1 _3_ _1_ 4

C. Headings, titles, or labels 4 _0_ _0_ 0

D. Comments or remarks _3 _3_ _3_ 18_

E. Date formats 4 _2_ _3_ 20

F. Time formats 0 _0_ _0_ 0
TOTAL 69.5

4GL SUMMARY SHEET
Wt. mult, by

Weight FUNC EASE FUNC+EASE
L OPERATIONAL FEATURES

A. Installation management

B. Ease of installing on multiple platforms

Z_ DATA MANAGEMENT

A. Basic data dictionary

B. Synonym or aliases

C. Headings, titles, or labels

D. Comments or remarks

E. Date formats

F. Time formats

G. Money formats

H. Variable-length fields

I. Capable of handling # chars per

field

43

Weight
Wt. mult, by

FUNC EASE FUNC+EASE

J. Capable of handling # fields

per record

K. Keyed or indexed files

L. Data structure management

M. Ability to read, query, or report

from ASCn files

N. Ability to import ASCII files

O. Ability to export ASCII files

P. Ability to read, query, or report

from formatted files

Q. Ability to import

formatted files

R. Ability to export

formatted files

S. Ability to modify files while loading

T. File check while loading

U. File modification

3^ USER INTERFACE

A. Capability to create simple menus

B. Capability to create complex menus

C. Default data entry screens provided

D. Capability to create straight text

screens

E. Capability to create display screens

F. Data checking on data entry

G. Reverse video control

44

Weight

H. Blinking data entry fields

I. Calculated fields display

J. Display of HELP information on screen

K. Capability to generate more complex

screens

L. Ability to print screen layout document

4^ REPORT WRITING FEATURES

A. Default report formats provided for

paging, dating, and headings

B. Default report formats provided for

summary functions

C. Default report selections provided

for ascending sorts

D. Default report selections provided

for descending sorts

Complex reporting options for:

E. Row totals and subtotals

F. Percent formats

G. Zero suppression

H. Floating dollar signs

I. Comma option for numeric fields

J. User specified spacing

K. User specified page breaks

L. Table lookups

M. Headings

N. Footers

Wt. mult, by
FUNC EASE FUNCh-EASE

45

Wt. mult, by
Weight FUNC EASE FUNC+EASE

O. Font selection '

P. Odd size printouts

Q. Forms printing

R. Suppressed fields

S. Calculated fields

T. Specific field placement

U. Output device independence (i.e.,

user could select screen, printer,

or file)

V. Output device adjustments (i.e.,

user selects screen, printer, or

file and 4GL adjusts for page

size, screen size, etc.)

5^ LANGUAGE FEATURES

A. SQL implementation

B. Simple queries on one file

C. AND OR logic - one file

D. Relational join

E. AND OR logic - two files

F. Complex Boolean logic

G. Traps command or statement errors

H. Facilitates correction of errors

L Compiles code

J. Interprets code

K. Condition logic

L. Looping logic

46

Weight

M. Intrinsic date/time functions

(DATE, DAY, MONTH, etc.)

N. Intrinsic numeric functions (MINIMUM,
MAXIMUM, AVERAGE, etc.)

0. Statistical functions:

Standard deviation

Variance

Regressional analysis

Correlation

Discriminant analysis

Factor analysis

Descriptive statistics

P. Ability to process missing data

6^ GRAPHICS FEATURES

A. Ability to create bar graphs

B. Ability to create pie charts

C. Ability to create exploded pie charts

D. Ability to create scatter diagrams

E. Ability to create line graphs

F. Ability to create connected point plots

G. Ability to incorporate trend lines in

scatter diagrams

H. Ability to curve fit or smooth

1. Availability of automatic scaling

J. Availability of logarithmic scaling

Wt. mult, by
FUNC EASE FUNC+EASE

47

Weight
Wt. mult, by

FUNC EASE FUNC+EASE

K. Ability to generate field labels and

titles from the data dictionary

L. Ability to utilize multiple fonts

M. Ability to calculate values to incor-

porate in the graph

N. Grid option

0. Color option

P. Hatch pattem options

Q. Ability to process missing values

7^ SECURITY FEATURES

A. Ability to specify user access

B. Ability to specify file security

C. Ability to limit command or procedure

usage

D. Ability to specify record access

E. Ability to specify field access

P. Ability to encrypt/decrypt files

G. Ability to encrypt/decrypt data

dictionary

H. Default logon procedure

1. User profile

J. Ability to define system administrator

K. Peature restrictions

L. Ability to create a user logon audit file

48

Wt. mult by
Weieht FUNC EASE FUNC+EASE

8^ IMPLEMENTATION FEATURES

A. Interface to other software packages

B. Interface to other languages

C. Interface to operating system

D. POSIX compatibility

E. Online HELP

F. Documentation

G. Interface to external editor/

word processor

H. Error messages and wamings

9, APPLICATION DEVELOPMENT

A. Program editor

B. Error messages

C. Branching logic

D. Looping logic

E. Language integration

F. Ability to call subroutines

G. Ability to imbed queries in procedures

H. Ability to share temporary data

I. Ability to create global variables

J. Ability to create local variables

K. Ability to define calculations using

field values

49

6. ANALYSIS AND CONCLUSIONS

After the complete functional benchmarking process has been repeated for each 4GL product under

consideration, the total numbers can be compared. A higher total number for one product compared

to the total of another product indicates that one product more fully met the requirements of an

application than the other.

The ratings of the individual tasks, especially for the highest weighted requirements, should also

be analyzed. This is important when two products have total scores that are very close to each

other. Analyzing individual functional areas of the 4GLs reveal the strengths and weaknesses of

the products relative to the requirements. Because certain requirements have more than one task,

analysis of the worksheets for each task may also be informative. An analysis of variance of

individual area scores may tell you how much confidence you should have in your choice.

Completion of the tasks and the evaluation of the results may also reveal that the initial

requirements weights should be adjusted. Sometimes requirements that seemed unimportant to an

application are discovered to be more important than originally thought. This adjustment of

requirements is an important part of the prototyping process. Completing the functional

benchmarking tasks is similar to completing a small prototype. A more thorough understanding of

the application's requirements is gained in the process.

The testing methodology and the set of functional benchmark tasks provided in this report should

facilitate the evaluation of 4GL products in relation to organizational requirements. Completing

the tasks requires some effort but the results will provide a more thorough understanding of the

4GL products under consideration. This should allow federal managers to make better informed

decisions in the selection and procurement process for a 4GL.

50

REFERENCES

[FIPS42] Guidelines for Benchmarking ADP Systems in the Competitive Procurement
Environment, Federal Information Processing Standards Publication 42-1 (FIPS PUB
42-1), National Bureau of Standards, Gaithersburg, MD, May 15, 1977.

[FIPS 127] Database Language SQL, Federal Information Processing Standards Publication

127-1 (FIPS PUB 127-1), National Institute of Standards and Technology,

Gaithersburg, MD, February 2, 1990.

[FIPS151] POSIX: Portable Operating System Interface for Computer Environments,

Federal Information Processing Standards PubUcation 151-1 (FIPS PUB 151-1),

National Institute of Standards and Technology, Gaithersburg, MD, March 28, 1990.

[FISH86] Fisher, Gary E., A Functional Model for Fourth Generation Languages, NBS
Special Publication 500-138, National Bureau of Standards, Gaithersburg, MD, June

1986, 28p. 23 refs.

[FISH87] Fisher, Gary E., Application Software Prototyping and Fourth Generation

Languages, NBS Special PubUcation 500-148, May 1987, 59p. 44 refs.

[GRAY86] Gray, Martha M., Guide to the Selection and Use of Fourth Generation

Languages, NBS Special Publication 500-143, September 1986, 58p. 100 refs.

51

INDEX

4GL database 18, 19

alias 17

alphanumeric string 22

analyze the results 5, 7

AND OR logic 13, 27, 46

application development iii, 7, 8, 10, 14, 27, 37, 49

array data 23

ASCn file 18, 19

audit file 14, 36, 48

automatic scaling 13, 31, 47

benchmark 1, 3-5, 42, 50

blinking 12, 22, 45

Boolean logic 13, 28, 46

color 5, 10, 13, 32, 48

column position 9, 23

compile 28

connected point plot 31

count 29

curve fit 13, 47

data dictionary 9, 11, 14, 16, 31, 35, 36, 42, 43, 48

data element 16-19, 22-24, 27, 28

data entry 12, 21-23, 44, 45

data structure 11, 18, 44

date format 17

debugging 10

decrypt 14, 34, 35, 48

demonstration 1,15

documentation 6, 8, 10, 14, 15, 36, 37, 49

editor 14, 34, 37, 38, 49

encrypt 14, 34, 35, 48

environment 1, 3, 4, 10, 32, 33, 36, 51

error 14, 28, 37, 41, 49

exploded pie chart 31

export 11, 12, 19, 44

extemal file 18-20

field access 14, 34, 48

file access 35

file rights 33

fUe security 14, 33, 48

file size 20

floating point 23

font 12, 25, 32, 46

footer 25

forms 12, 16, 26, 46

Fortran 9, 36

functional benchmark 1, 4, 5, 42, 50

functional model iii, 2, 51

graphics 5, 7, 9, 10, 13, 15, 31, 36, 47

52

grid option 13, 32, 48

hatch pattern 13, 32, 48

header 25

help 6, 10, 12, 14, 16, 22, 36, 37, 45, 49

horizontal menu 21

implementation 2, 7-10, 13, 14, 27, 36, 46, 49

import 7, 11, 12, 18, 19, 44

installation 8, 11, 15, 43

integration 9, 10, 14, 27, 41, 49

interpret 28

joined files 27, 28, 34

key or index 16, 17

language 1, 4, 7-10, 13, 14, 26, 27, 31, 36-38, 41, 46, 49, 51

line graph 31, 32

logon 14, 35, 36, 48

mandatory 3, 4, 8, 11

menu 4, 8, 20, 21, 26

methodology iii, 1, 2, 4, 50

missing data 13, 30, 47

money format 17

multiple platforms 11, 15, 43

National Bureau of Standards iii, 2, 51

National Computer Systems Laboratory 2

National Institute of Standards and Technology iii, 2, 51

NBS iii, 1, 2, 51

NIST 1, 2

nonprocedural 9, 37, 38, 41

numeric field 24, 26, 30

operating system 4, 8, 10, 14, 15, 34, 36, 49, 51

page break 7, 9, 23-25

page size 12, 25

password 10, 32, 35

percent 12, 24, 45

performance 1, 2, 5, 6, 8, 9, 14-16, 20, 23, 27, 31, 33, 36, 38

photographic output 10

pie chart 31

POSIX 14, 36, 49, 51

presentation graphics 10

printer 12, 17, 23, 26, 31, 46

protection 10, 32, 35

prototype iii, 10, 38, 50

puU-down menu 21

query language 9, 26

record access 14, 34, 48

reference manual 15

relational database 5

relational join . 13, 27, 46

report writer 9, 35

requirements 1-11, 14, 15, 26, 35, 38, 42, 50

reverse video 12, 22, 44

53

scaling 10, 13, 31, 47

scatter diagram , 31

screen generator 9, 35

screen layout 12, 23, 45

screen painter 10

screen size 12, 46
scrolling 21

security 7, 10, 13, 14, 32, 33, 48

selection process iii, 1-4, 8, 11

smooth 13, 47

sort 7, 24-26

SQL 13, 27, 46, 51

subroutine 33, 38

subtotal 7, 24, 29

synonym 11, 17, 42, 43

syntax 26, 38, 41

system administrator 14, 35, 48

time format 17

trend line 31

tutorial 15

user access 13, 33, 48

user identification 10

user interface 8, 9, 12, 20, 44

user profile 14, 35, 48

user's guide 15

vertical menu 21

view 10, 33-35

weight 5-7, 11, 42-49

weighted score 5, 7

window 22

word processor 14, 37, 49

zero suppression 12, 24, 45

54

4. TITLE AND SUBTITLE

Functional Benchmarks for Fourth Generation Languages

5. AUTHOR(S)

Martha Mulford Gray and Gary E. Fisher

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final

NIST-114A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NIST/SP-500/184
PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

March 1991

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Software Engineering Group
Systems and Software Technology Division
National Computer Systems Laboratory NIST

Gaithersburg, Maryland 20899
10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION.
UTERATURE SURVEY, MENTION IT HERE.)

IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR

In recent years, fourth generation language (4GL) usage ha

organizations, especially where end-users have assumed inc

Since there are no 4GL standards, managers selecting a 4GL

how well a particular 4GL will meet organizational, applic

report provides a methodology to assist in that determinat
benchmarks" (as opposed to performance benchmarks) consist
descriptions of tests to evaluate the capabilities of a pa

zational requirements. Test results are evaluated at two

perform a task, and the ease of performing it. The evalua

defined weighted requirements to produce an overall rating

s expanded in data processing
reased programming responsibilities
need some method of determining

ation, and user requirements. This

ion. It contains "functional

ing of a testing methodology and

rticular 4GL in relation to organi-

levels: the 4GL's ability to

tions are combined with user-

for each 4GL tested.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

database. management; end-user computing; 4GL, 4GL requirements, fourth generation language,

functional benchmark, nonprocedural language; report writer; screen generation.

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

60

15. PRICE

ELECTRONIC FORM *U
.
S . G

.
P

.
0 : 1 991 -281 -557 : 40023

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Docximents

Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineei-s, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-
der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building
materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for fmal reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents,. Government Printing Office,

Washington, DC 20402.

Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information
Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

